
Visualization of Fluid Flows using Mathematica

James E. Coleman

Midshipman

U. S. Naval Academy

Annapolis MD, 21412

Reza Malek{Madani

Department of Mathematics

U. S. Naval Academy

Annapolis, MD 21402

David R. Smith

Department of Oceanography

U. S. Naval Academy

Annapolis, MD 21402

Abstract

We present numerical solutions to two fun-
damental
ows in
uid dynamics: a) Serrin's
swirling vortex, and b) the Rayleigh{B�enard

ow In each case we solve a system of non-
linear ordinary di�erential equations that arise
from the velocity �eld and monitor the evolu-
tion of particles of
uids. The velocity �elds in
turn are solutions of partial di�erential equa-
tions that govern the conservation of mass
and the balance of linear momentum in each

ow. All of the computations, whether sym-
bolic or numerical, are performed in Mathe-

matica. The computational code essential to
visualizing each
ow is presented in the sequel.

1 Introduction

Data visualization has always played an impor-
tant role in the mathematical analysis of non-
linear partial and ordinary di�erential equa-
tions. It is often di�cult, if not impossible,
to obtain exact and analytic solutions of these
equations and, as a result, one either resorts to
approximate methods or applies analytic tech-
niques in order to gain insight into the quali-

tative behavior of solutions. In the context of

uid dynamics, where one is confronted with
the analysis of the Navier{Stokes equations, a
visual rendition of an approximate solution and
its comparison with the physical setting one is
modeling o�ers an extra measure of validation.
It is not uncommon, for instance, to discover
that one should look more carefully at the sta-
bility of a certain solution after viewing the dy-
namics of
uid particles rendered by the math-
ematical model.

The mathematical models we discuss in
this paper have fundamental importance in

uid dynamics and ocean{atmosphere model-
ing. The techniques we describe in solving
the underlying di�erential equations are car-
ried out in the software package Mathemat-

ica on a standard personal computer. We are
able to use internal functions of this software
to solve nonlinear boundary-value and initial{
value problems that arise from considering spe-
cial solutions of the Navier{Stokes equations.
The techniques that we describe may be com-
bined with the Galerkin scheme to allow for
studying physical problems with less symmetry
in their solution structure as well as more com-
plicated boundary conditions considered here.

1

2 Serrin's Swirling Vortex

Serrin's swirling vortex is a steady{state so-
lution to the Navier{Stokes equations. It de-
scribes the dynamic
ow in a system involving
a vortex line interacting with a perpendicular
boundary surface to which
uid particles ad-
here. This solution provides a model of the ide-
alized
uid
ow of an atmospheric tornado in
contact with the Earth's surface. The velocity{
pressure pair, (v; p), of this solution satis�es
the steady{state Navier{Stokes equations

� (v � rv) = �rp+ �4v; div v = 0; (1)

where � is the kinematic viscosity. The �rst
set of equations represents the balance of lin-
ear momentum while the second equation ex-
presses the conservation of mass. Equations (1)
are supplemented by the boundary conditions

vj
z=0

= 0; lim
jjxjj!1

v = 0; (2)

The second boundary condition (2) is imposed
since we seek solutions whose behavior is local
in space.
Let r, �, and � denote the standard spherical

coordinates. The domain of the
ow is r > 0,
0 � � < �

2
, and 0 � � < 2�. Let v

r
, v

�
, and v

�

denote the components of the velocity vector v
in this coordinate system. Following Serrin [1],
we seek solutions to (1){(2) with the special
structure

v
r
=
G(cos�)

r sin�
; v

�
=
F (cos�)

r sin�
; and

v
�
=

(cos�)

r sin�
: (3)

After transforming equations (1){(2) to spher-
ical coordinates and substituting (3) there, we
�nd that G = F 0 sin� and that F and
 must
satisfy the following system of ordinary di�er-
ential equations: Let f be related to F through
the relation F = 1

k
(1� x2)f where

k =
�

2�
:

Let Q be de�ned by

Q(x) = 2(1� x2)

Z
x

0

t
2(t)

(1� t2)2
dt+

2x

Z
1

x

2(t)

(1 + t)2
dt� (x� x2)P;

where P is a contant of integration. Then f

and
 satisfy the system of integro{di�erential
equations

f 0 + f2 =
k2

(1� x2)2
Q;
00 + 2f
0 = 0; (4)

with x 2 (0; 1). This system is complemented
with the boundary conditions

f(0) =
(0) = 0;
(1) = 1: (5)

We have skipped quite a few steps in trans-
forming (1){(2) to (4){(5). The computations
in these steps are generally well{known and
straightforward. A reader interested in the de-
tails of this analysis is strongly encouraged to
consult Serrin [1].
We �nd an approximate solution to the

boundary{value problem in (4){(5) by ap-
plying the Picard iteration scheme together
with the shooting method to this system (see
Malek{Madani [2] for details of how one imple-
ments these techniques in Mathematica). The
Picard iteration scheme is used to reduce the
system of integro{di�erential equations to a
system of ordinary di�erential equation; The
latter system can then be solved accurately
with routines that already exist in Mathemat-

ica. The shooting method is employed to con-
vert the boundary{value problem to a sequence
of initial{value problems. The internal func-
tions NDSolve and FindRoot of Mathematica

are combined at this stage to obtain a sequence
of solutions to appropriate initial{value prob-
lems that ultimately converge to the solution
of the boundary{value problem. Program 1
displays the syntax of the Mathematica com-
mands used in implementing the Picard itera-
tion scheme and the shooting method.

Program 1:

P = 1; k = 1;

llabel=StringJoin["P = ",

ToString[P],",

k = ", ToString[k]];

xfinal=.9999;

y2[x_]=x;

Do[

2

sol1=NDSolve[

{y1'[x]==k^2/(1-x^2)^2 *

(2(1-x)^2* NIntegrate[

t y2[t]^2/(1-t^2)^2, {t,0,x},

MaxRecursion->10]+

2x NIntegrate[y2[t]^2/(1+t)^2,

{t,x,xfinal},

MaxRecursion->10]-

P(x-x^2))-y1[x]^2, y1[0]==0},

y1,{x, 0, xfinal}];

Clear[y2];

yone[x_] = First[y1[x] /. sol1];

output=FindRoot[First[

Evaluate[y2[xfinal] /.

NDSolve[{y2'[x]==y3[x],

y3'[x]==-2 yone[x] y3[x],

y2[0]==0,y3[0]==a},{y2,y3},

{x,0,xfinal}]]]-1,

{a, 0.1, 0.9}];

sol2=NDSolve[{y2'[x]==y3[x],

y3'[x]==-2 yone[x] y3[x],

y2[0]==0, y3[0]==a /. output},

{y2,y3},

{x,0,xfinal}, MaxSteps->2000,

WorkingPrecision->15];

y2[x_]=First[y2[x] /.sol2];

Print[y2[0.1]],

{i,1,10}];

F1[x_]=1/k (1-x^2) yone[x];

F2[x_]=D[F1[x],x] Sqrt[1-x^2];

Omg1[x_]=First[First[y2[x]/.sol2]];

graph1=Plot[

{F1[x],F2[x],Omg1[x]},{x,0,xfinal},

PlotRange->All, PlotLabel->llabel];

Figure 1 shows the output of this program,
which consists of the graphs of F , G, and
.

We now proceed with obtaining the neces-
sary data to visualize the
uid
ow generated
by the triple (F;G;
). This triple de�nes the
components of the velocity �eld v through the
relations (3). The dynamical system that gov-
erns the evolution of particles of
uids under
this velocity �eld is a set of three nonlinear
ordinary di�erential equations for the triple
(r(t); �(t); �(t)). The rate of change of r, �,
and � with respect to t are related to v

r
, v

�
,

and v
�
through the formulas

dr

dt
=
G(cos�)

r
;

d�

dt
=

(cos�)

r2 sin2 �
; and

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

P = 1, k = 1

Figure 1: The graphs of F , G, and
 when
P = 1 and k = 1.

t = 4. t = 5.

t = 0 t = 2.

Figure 2: Four snapshots of a parcel of
uid un-
dergoing a tornado{like motion. Here, a parcel
of
uid consisting of 325 data points that orig-
inally occupy a sphere of radius 0.3 near the
vortex �lament is considered. The evolution of
this parcel is then displayed at 51 equal subse-
quent time intervals, four of which are shown
in this �gure.

3

d�

dt
=
F (cos�)

r2 sin�
: (6)

Program 2 starts with the output of Program
1, namely, the numerical values of F , G, and

 and proceeds to solve for the solutions of a
typical initial{value problem based on (6). The
program is written so that one could visually
follow the evolution of any number of parcels
of
uid, each consisting of any number of parti-
cles. The initial shape of each parcel is taken to
be a sphere. Each parcel is colored di�erently
so that one could observe mixing of di�erent
portions of the atmosphere due to the action
of the dynamical system. The syntax of this
program is as follows:

Program 2:

time=5;

tinterval=.1;

parcels=1;

Va[alpha_, theta_, r_]=

(F1[Cos[alpha]])/(r Sin[alpha]);

Vr[alpha_, theta_, r_]=

(F2[Cos[alpha]])/(r);

Vt[alpha_, theta_, r_]=

(Omg1[Cos[alpha]])/(r Sin[alpha]);

diffeqn[tfinal_, {b_, c_, d_}]:=

NDSolve[{alpha'[t]==(1/r[t])*

Va[alpha[t], theta[t], r[t]],

theta'[t]==1/(r[t]Sin[alpha[t]])*

Vt[alpha[t], theta[t], r[t]],

r'[t]==Vr[alpha[t],

theta[t], r[t]],

alpha[0]==b, theta[0]==c,

r[0]==d},

{alpha, theta, r}, {t,0,tfinal}];

e=.5;

f=.5;

g=.5;

h=.3;

n=12; colors={RGBColor[1,0,0],

RGBColor[0,1,0], RGBColor[0,0,1]};

Print["Parcels being generated ..."];

filament=Graphics3D[

Line[{{0,0,0},{0,0,2}}]];

Do[

CoordPointsCart[m+1]=

Flatten[Table[{

x->N[e+m+h Sin[v] Sin[w]],

y->N[f+h Sin[v] Cos[w]],

z->N[g+h Cos[v]]},

{w, 0,2 Pi, Pi/n},

{v, 0, Pi, Pi/n}],1];

PointsCart[m+1]=

{x,y,z}/. CoordPointsCart[m+1];

MakePointsCart[m+1]=

Table[Point[PointsCart[m+1][[i]]],

{i, Length[PointsCart[m+1]]}];

graph[m+1] = Graphics3D[

{colors[[m+1]],

MakePointsCart[m+1]}],

{m,0, parcels-1}];

snapshot[1] = Join[{filament},

Table[graph[m+1],

{m, 0, parcels-1}]];

Print["Parcels generated"];

Print["Generating new snapshots"];

plot[1]=Show[snapshot[1],

PlotRange->{{-1,1},{-1,1},{0,2}},

PlotLabel->"t = 0"];

Do[SpherePoints[m+1]=

{N[ArcCos[z/Sqrt[x^2+y^2+z^2]]],

N[ArcCos[y/Sqrt[x^2+y^2]]],

N[Sqrt[x^2+y^2+z^2]]} /.

CoordPointsCart[m+1],

{m,0,parcels-1}];

howlong=Timing[

Do[oldsolution[m+1]=

Flatten[Table[

diffeqn[time,

SpherePoints[m+1][[i]]],

{i,1,Length[

SpherePoints[m+1]]}],1],

{m, 0, parcels-1}]];

Print["Finished with NDSolve ..."];

Print["CPU used ...",howlong];

Do[currentTime=j*tinterval;

Do[cartsol[m+1]=Table[{

r[t] Sin[alpha[t]] Sin[theta[t]],

r[t] Sin[alpha[t]] Cos[theta[t]],

r[t] Cos[alpha[t]]} /.

oldsolution[m+1][[i]]/.

t->currentTime,

{i,1, Length[oldsolution[m+1]]}],

{m,0,parcels-1}];

Do[points2[m+1] = Table[

Point[cartsol[m+1][[i]]],

{i, Length[cartsol[m+1]]}],

{m,0,parcels-1}];

Do[graph[m+1]=Graphics3D[

{colors[[m+1]], points2[m+1]}],

4

{m,0,parcels-1}];

snapshot[j+1] = Join[{filament},

Table[graph[m+1],

{m, 0,parcels-1}]];

label=StringJoin["t = ",

ToString[j*tinterval]];

plot[j+1]=Show[snapshot[j+1],

PlotRange->{{-1,1},{-1,1},{0,2}},

PlotLabel->label],

{j, 1, 50}];

graph2=Show[GraphicsArray[

{{plot[1], plot[21]},

{plot[41], plot[51]}}]];

Figure 2 shows a portion of the output of
this program. The entire output consists of 51
frames displaying the position of 325 particles
at various times t > 0; These particles formed a
sphere of radius 0.3 at time 0. Using an internal
function in Mathematica, the snapshots can be
animated to create a movie of the tornado.
Program 2 is written to accommodate many

parcels of
uids; The limitation on the number
of parcels is a function of the amount memory
available on the CPU. Each parcel is colored
di�erently so mixing and transport of
uid par-
ticles in various regions in the domain can be
monitored visually.
Program 2 can also be modi�ed readily to

study the in
uence of the parameters k and P
on the behavior of the solutions. According to
the analysis presented in Serrin [1], the Navier{
Stokes equations (1) allow for at least three
types of tornado{like behavior, a funnel of the
type shown in Figure 2, a funnel that descends
towards the boundary z = 0 before spreading
out, and a third solution with properties sim-
ilar to the �rst but with a tight, pencil{like
shape. It is not clear at this point which of
these solutions, if any, is a stable solution of
the full Navier{Stokes equations. In the fu-
ture, we will embark on the program of numer-
ically studying the stability of the individual
funnels by perturbing each steady{state solu-
tion and monitoring the asymptotic state of the
perturbed solution.

3 Rayleigh{B�enard Flow

In Camassa and Wiggins [3], a model of chaotic
advection is presented that is based on time{

periodic perturbation of a standard stream
function formulation of the Rayleigh{B�enard

ow. Let be de�ned by

 (x; z; t) = sin(�x) sin(�z)+

� cos(!t) cos(�x) sin(�z); (7)

where � and ! are given constants. The �rst
part of , sin�x sin�z, is the standard stream
function for the Rayleigh{B�enard while � and
! are the amplitude and frequency of the per-
turbation, respectively. Physically, this stream
function models the motion of
uid particles
that are being exposed to a temperature gradi-
ent in the z direction and a mechanical periodic
motion in the x direction. The primary ques-
tions have to do with the transport and mixing
of
uids and the asymptotic state of the
ow.
The equations of motion of an individual

uid particle are related to through the rela-
tions

dx

dt
=
@

@z
;

dz

dt
= �

@

@x
: (8)

It is easy to show that when � is zero a typical
particle of
uid undergoes a periodic motion
con�ned to a 1� 1 cell de�ned by the particles
initial position and no mixing occurs between
neighboring cells. But when � > 0 and ! > 0, a
typical
uid particle may visit neighboring cells
(see Figure 3) and a
uid particle from one cell
could possibly enter a cell far away from its
original cell. More importantly, at least from
a mathematical point of view, particles of
uid
that are originally located near one of the ver-
tical boundaries of a cell have a tendency to re-
act more drastically to the perturbation term
in (7) than the particles that are located near
the middle of a cell. Thus the rate of mixing
of
uids is not only in
uenced by � and !, but
also by the location of a
uid particle prior to
being acted upon by the perturbation.
To obtain a �gure such as Figure 3 one must

solve the system of di�erential equations in (7)
for large values of t. Program 3 exhibits the
code used in obtaining this �gure, whose signif-
icant part is the block myNDSolve, designed es-
pecially for solving systems of di�erential equa-
tions over large time intervals while making ef-
�cient use of the built{in adaptivity of Mathe-

matica's NDSolve.

Program 3:

5

myNDSolve[f_,g_,initial_,

tfinal_,deltat_]:=

Block[{a,b,sol,sol1},

a=initial[[1]]; b=initial[[2]];

Do[sol1[i]=NDSolve[{

x'[t]==f[x[t],z[t],t],

z'[t]==g[x[t],z[t],t],

x[(i-1)*deltat]==a,

z[(i-1)*deltat]==b},

{x,z}, {t,(i-1)*deltat,

i*deltat}];

graph[i]=ParametricPlot[

Evaluate[{x[t], z[t]}/. sol1[i]],

{t, (i-1)*deltat,i*deltat},

DisplayFunction->Identity];

a=First[x[i*deltat]/.sol1[i]];

b=First[z[i*deltat]/. sol1[i]],

{i, 1, tfinal/deltat}]

];

tfinal = 100;eps=0.1;

omega=6;deltat=1/10;

ep=ToString[eps];

om=ToString[omega];

time=ToString[tfinal];

llabel=StringJoin["eps = ",ep,",

omega =",om,", t = ",time];

psi[x_, z_,t_] =

Sin[Pi*x]*Sin[Pi*z]+

eps*Cos[omega*t]*

Cos[Pi*x]*Sin[Pi*z];

f[x_,z_,t_]=D[psi[x,z,t],z];

g[x_,z_,t_]=-D[psi[x,z,t],x];

initial={0.15,0.01};

solution=myNDSolve[f,g,

initial,tfinal,deltat];

Show[Table[graph[i],

{i, 1, tfinal/deltat}],

DisplayFunction->$DisplayFunction,

PlotLabel ->llabel]

An important piece of information in the
analysis of (7) is how long it takes for the trjec-
tory of a typical
uid particle to leave its orig-
inal cell. In the case of
uid particle originally
located in the \�rst" cell with 0 < x0 < 1, ob-
taining this information requires determining
t� and t�� such that

x(t�) = 1 andx(t��) = 0:

2 4 6 8

0.2

0.4

0.6

0.8

1

eps = 0.1, omega =6, t = 100

Figure 3: The trajectory of the particle located
originally at (0:15; 0:01). Here � = 0:1, ! = 6
and t 2 (0; 100). This particle spends quite a
bit of time in its original cell while also spend-
ing a substantial amount of time visiting other
cells.

Since x(t) is a numerical solution of a system of
di�erential equations, determining these values
of t requires applying NDSolve together with a
root �nder in Mathematica. Program 4 dis-
plays one such program.

Program 4:

eps=0.1;omega=6;

psi[x_, z_,t_] =

Sin[Pi*x]*Sin[Pi*z]+

eps*Cos[omega*t]*

Cos[Pi*x]*Sin[Pi*z];

f[x_,z_,t_]=D[psi[x,z,t],z];

g[x_,z_,t_]=-D[psi[x,z,t],x];

sol1[a_, b_,tfinal_]:=

NDSolve[{x'[t]==f[x[t],z[t],t],

z'[t]==g[x[t],z[t],t],

x[0]==a, z[0]==b}, {x,z},

{t,0,tfinal}, MaxSteps->5000];

rightexit={};leftexit={};

Do[a=0.01+i/20; b=0.01;

solution=sol1[a,b, 40];

aa=ToString[a]; bb=ToString[b];

6

llabel=StringJoin[

"(",aa,",",bb,")"];

Clear[c,average,x1, domain,

range,tpositive,tnegative];

x1[t_]=First[x[t]-1.000001/.

solution];

domain=Table[t,{t,0,40, 0.1}];

range=x1[domain];

testrange=Table[range[[i]]*

range[[i+1]],

{i, Length[range]-1}];

Catch[Do[index=i;

If[testrange[[i]]<0, Throw[i]],

{i, Length[testrange]}]];

If[range[[index]]<0,

tnegative=domain[[index]],

tnegative=domain[[index+1]]];

If[range[[index]]<0,

tpositive=domain[[index+1]],

tpositive=domain[[index]]];

Do[average=

(tpositive+tnegative)/2;

c=x1[average];

If[c < 0, tnegative=average,

tpositive=average],{i, 50}];

ExitToRight=average;

rightexit=Append[rightexit,

{a, b, ExitToRight}];

x2[t_]=First[x[t]-0.00001/.

solution];

Plot[x2[t], {t, 0, 40},

PlotPoints->500,

PlotLabel->StringJoin["x(t)

with x(0) = ", aa]];

domain=Table[t,{t,0,40, 0.1}];

range=x2[domain];

testrange=Table[range[[i]]*

range[[i+1]],

{i, Length[range]-1}];

Catch[Do[index=i;

If[testrange[[i]]<0, Throw[i]],

{i, Length[testrange]}]];

If[range[[index]]<0,

tnegative=domain[[index]],

tnegative=domain[[index+1]]];

If[range[[index]]<0,

tpositive=domain[[index+1]],

tpositive=domain[[index]]];

Do[average=(tpositive+

tnegative)/2;

c=x2[average]; If[c < 0,

tnegative=average,

tpositive=average],{i, 50}];

ExitToLeft=average;

Print[llabel," exits to

the cell

on the right at t = ",

ExitToRight];

Print[llabel," exits to

the cell

on the left at t = ",

ExitToLeft];

leftexit=Append[leftexit,

{a, b, ExitToLeft}],

{i, 1, 19}];

ExitTime=Table[Min[

rightexit[[i,3]],

leftexit[[i,3]]],

{i,Length[leftexit]}];

graph1=ListPlot[ExitTime,

PlotJoined->True,

PlotRange->All,

AxesOrigin->{0,0},

PlotLabel-> StringJoin[

"Exit time of

particles located at z = ",

bb]]

Figure 4 shows part of the output of this
program. Note, in particular, that two nearby
particles, originally located at (0:06; 0:01) and
(0:11; 0:01), have remarkably di�erent trajec-
tories, alerting the reader to the chaos investi-
gated in [3].
Program 4 combines NDSolvewith the bisec-

tion method. It is written with the anticipation
that after 40 units of time a particle will exit its
cell either from the left or the right. Obvious
modi�cations need be made if a particle does
not exit its cell after a speci�ed period of time.
This program is also capable of displaying the
graph of exit{time versus the horizontal coordi-
nate of the original position of a set of particles
chosen in a speci�c cell.
As a further testimony to the chaotic nature

of the solutions of (8), we now display the evo-
lution of a parcel of
uid much in the same
spirit as was carried out in Program 2.

Program 5:

tfinal = 10;eps=0.1;n=20;

tinterval=1/50;

7

10 20 30 40

-6

-4

-2

2

x(t) with x(0) = 0.11

10 20 30 40

2

4

6

8

10

x(t) with x(0) = 0.06

Figure 4: The trajectories of two particles lo-
cated originally at (0:06; 0:01) and (0:11; 0:01).
Again, � = 0:1 and ! = 6. Program 4 de-
termines whether each particle �rst exits its
cell from the left or the right. This program
is based on combining a di�erential equation
solve and the bisection method as a root �nder.

omega=6;

ep=ToString[eps];

om=ToString[omega];

psi[x_,z_,t_]=Sin[Pi*x]*Sin[Pi*z]+

eps*Cos[omega*t]*Cos[Pi*x]*Sin[Pi*z];

f[x_,z_,t_]=D[psi[x,z,t],z];

g[x_,z_,t_]=-D[psi[x,z,t],x];

diffeqn[tfinal_, {b_, c_}]:=

NDSolve[{x'[t]==f[x[t],z[t],t],

z'[t]==g[x[t],z[t],t],

x[0]==b, z[0]==c},

{x,z}, {t,0,tfinal}];

InitialPoints=Table[

{0.8 +0.1 Cos[t], 0.2 +0.1 Sin[t]},

{t, 0, 2 Pi, 2Pi/n}];

plot[1]=Show[Graphics[

Table[Point[InitialPoints[[i]]],

{i,Length[InitialPoints]}]],

PlotRange->{{-1,1},{-1,1}},

Axes->True,

AspectRatio->Automatic];

oldsolution= Flatten[Table[

diffeqn[tfinal,InitialPoints[[i]]],

{i,1,Length[InitialPoints]}],1];

Do[currentTime=j*tinterval;

sol=Table[{x[t],z[t]}/. o

ldsolution[[i]]/. t->currentTime,

{i,1, Length[oldsolution]}];

points2 = Table[Point[sol[[i]]],

{i, Length[sol]}];

graph=Graphics[points2];

time=ToString[currentTime];

llabel=StringJoin[" t = ",time];

plot[j+1]=Show[graph,

PlotRange->{{-1,1},{-1,1}},

PlotLabel->llabel, Axes->True, A

spectRatio->Automatic],

{j, 1, 100}]

graph3b=Show[GraphicsArray[

{{plot[1]}, {plot[11]},

{plot[51]}, {plot[81]}}]];

Figure 5 shows part of the output of Program
5. With ! = 6 and � = 0:1, this program fol-
lows the evolution of 50 particles that formed a
circle of radius 0:1, centered at (0:2; 0:2) at time
zero. The program then draws a snapshot of
the location of these particles at time intervals
of 0:1. Altogether one hundred snapshots are
drawn, four of which are displayed in Figure 5.
This �gure clearly points to the chaotic charac-

8

-1 -0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
t = 8.

-1 -0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
t = 5.

-1 -0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1
t = 1.

-1 -0.5 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Figure 5: This �gure shows four snapshots cor-
responding to the position of 50 particle points
that originally formed a circle of radius 0.1 cen-
tered at (0:2; 0:2). The times of the snapshots
are t = 0; 1; 5 and 8. Note that, in a man-
ner that is hard to predict, various particles
have begun visiting neighboring cells by the
time t has reached 8 while other particles have
remained in their original cell.

ter of this
ow since particles that at time zero
were are at most 0.4 units apart are vastly sep-
arated by the time t reaches 10.

An additional technical tool that can be used
in this �gure is color. By using di�erent col-
ors for particles occupying various parts of the
original circle, one may gain insight into which
particles have more of a tendency to leave their
cell and mix with particles in other cells.

4 Conclusions

In this paper we have discussed in some detail a
numerical approach for studying sets of di�er-
ential equations that govern two fundamental

ows in
uid dynamics, tornadoes as steady{
state solutions of the Navier{Stokes equations
and the Rayleigh{B�enard problem. The com-
mon feature in both models is that because
of the nature of the mathematical questions
under investigation, we are obliged to use dif-
ferential equation solvers in combination with
root-�nding techniques. These algorithms are
available in Mathematica, as well as in a va-
riety of other powerful software packages on
the market. What should be emphasized here
is how one is able to take the output of one
internal function, such NDSolve, and make it
available as input for another internal function,
such as FindRoot. Programs 1 and 4 succeed
in demonstrating this capability.

The main strategy of this paper, namely, �rst
seeking the velocity �eld of a
uid
ow as a
solution of a partial di�erential equation and
second, exhibiting trajectories of the resulting
dynamical system, may be applied to a vari-
ety of fundamental physical problems, among
which is the
ow past an aircaft wing. We have
succeeded in implementing this strategy for the
so{called \vortex lattice method" (see [4]). In
this method, in contrast with the Rayleigh{
B�enard problem, the velocity �eld has a poten-
tial which is computed by applying the Biot{
Savart formula to a lattice discretization of the
wing. Once the potential is determined, the
process of obtaining particle trajectories fol-
lows closely the algorithm described in Pro-
gram 2 and 3.

A signi�cant feature demonstrated in Pro-
gram 1 is the successful implementation of the

9

Picard iteration scheme. Using this scheme
we are able to reduce a nonlinear system of
integro{di�erential equations to a sequence of
ordinary di�erential equation, each of which
lends itself to NDSolve of Mathematica. For
the range of parameters P and k under consid-
eration here, it is not di�cult to show that the
sequence of solutions of the di�erential equa-
tions converges, and that the limiting function
is a solution of the original integro{di�erential
system.
The Picard iteration scheme is a standard

method in mathematics for obtaining solutions
to nonlinear problems, especially for the case of
nonlinear integral and partial di�erential equa-
tions. Several examples of this method when
applied to problems of interest in ocean dynam-
ics appear in [2]. We are planning on present-
ing applications of this method to the dynam-
ics of the Gulf Stream as well as the unsteady
Navier{Stokes equations in the near future.

5 Acknowledgements

Reza Malek{Madani gratefully acknowl-
edges receiving partial support from the
O�ce of Naval Research, grant number
N0001497WR20002, while working on this
project.

6 References

[1] Serrin, James, \The swirling vortex", Philo-
sophical Transactions of the Royal Society of

London 271A (1972): 325 { 360.

[2] Malek{Madani, Reza, Advanced Engi-

neering Mathematics with Mathematica

and MATLAB, Volumes I and II, Addison{
Wesley{Longman, Newton, MA, 1998.

[3] Camassa, R. and Wiggins, S., \Chaotic ad-
vection in a Rayleigh{B�enard
ow", Physical
Review A, Vol 43, no. 2 (1991): 774 { 797.

[4] Bertin, John J. and Smith, Michael L.,
Aerodynamics for Engineers, 3rd Edition,
Prentice Hall, Upper Saddle River, NJ, 1998.

10

